亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于深度主動學習與CBAM的細粒度菊花表型識別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(61502236)、國家級創(chuàng)新訓練專項項目(202310307095Z)和江蘇省研究生實踐創(chuàng)新計劃項目(SJCX23_0203)


Fine-grained Chrysanthemum Phenotype Recognition Based on Deep Active Learning and CBAM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對菊花種類繁多,花型差別細微,準確標注比較困難的問題,基于深度主動學習與混合注意力機制模塊(Convolutional block attention module,CBAM),提出了一種標號數(shù)據(jù)不足情況下的菊花表型智能識別方法和框架。首先,通過主動學習策略基于最優(yōu)標號和次優(yōu)標號法(Best vs secondbest,BvSB)在未標記菊花樣本中選取信息量較大的樣本進行標記,并將標記后的樣本放入訓練樣本中;其次,使用深度卷積神經(jīng)網(wǎng)絡ResNet50作為本文的主干網(wǎng)絡訓練標記樣本,引入混合注意力機制模塊CBAM,使模型能夠更為準確地提取細粒度圖像中的高層語義信息;最后,用更新后的訓練樣本繼續(xù)訓練分類模型,直到模型達到迭代次數(shù)后停止。實驗結果表明,該方法在少量菊花標記樣本下,精確率、召回率和F1值分別達到93.66%、93.15%和93.41%。本文方法可為標號數(shù)據(jù)不足情況下的菊花等花卉智能化識別提供技術支撐。

    Abstract:

    Chrysanthemums have a wide variety of flower types with subtle differences in flower phenotypes, which are difficult to label accurately, and this poses a great challenge for intelligent classification and recognition of chrysanthemums. Based on deep active learning and hybrid attention mechanism module, i.e. convolutional block attention module (CBAM), a method and framework for intelligent recognition of chrysanthemum phenotypes under insufficient labeling data was proposed. Firstly, the more informative samples among the unlabeled chrysanthemum samples were selected for labeling by an active learning strategy based on the optimal labeling and second-optimal labeling method BvSB (Best vs second-best), and the labeled samples were put into the training samples;secondly, a deep convolutional neural network ResNet50 was used as the backbone network to train the labeled samples, and the hybrid attention mechanism module CBAM was introducted, so that the model can more accurately extract the high-level semantic information in fine-grained images;finally, the classification model continued to be trained with the updated training samples until the model reached the number of iterations and then stopped. The experimental results showed that the method can achieve 93.66%, 93.15% and 93.41% of precision, recall and F1 value respectively with a small number of chrysanthemum labeled samples. The method can provide technical support for intelligent identification of chrysanthemums and other flowers under the situation of insufficient labeling data.

    參考文獻
    相似文獻
    引證文獻
引用本文

袁培森,丁毅飛,徐煥良.基于深度主動學習與CBAM的細粒度菊花表型識別[J].農(nóng)業(yè)機械學報,2024,55(2):258-267. YUAN Peisen, DING Yifei, XU Huanliang. Fine-grained Chrysanthemum Phenotype Recognition Based on Deep Active Learning and CBAM[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(2):258-267.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-07-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-02-10
  • 出版日期:
文章二維碼