亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于輕量化高效層聚合網(wǎng)絡(luò)的黃花成熟度檢測(cè)方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(12375050)、山西省教育科學(xué)“十四五”規(guī)劃課題項(xiàng)目(GH-220178)、山西省基礎(chǔ)研究計(jì)劃項(xiàng)目(202303021211330)、山西省研究生實(shí)踐創(chuàng)新項(xiàng)目(2023SJ290)、山西大同大學(xué)基礎(chǔ)科研基金項(xiàng)目(2022K1)、山西大同大學(xué)研究生科研創(chuàng)新項(xiàng)目(2023CX07)和山西大同市科技計(jì)劃項(xiàng)目(2023015)


Maturity Detection Method for Hemerocallis citrina baroni Based on Lightweight and Efficient Layer Aggregation Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)黃花傳統(tǒng)人工識(shí)別效率低,辨識(shí)標(biāo)準(zhǔn)不統(tǒng)一的問題,提出基于輕量化和高效層聚合過渡網(wǎng)絡(luò)的黃花成熟度識(shí)別方法LSEB YOLO v7。首先,引入輕量化卷積對(duì)高效層聚合網(wǎng)絡(luò)和過渡模塊進(jìn)行輕量化處理,減少模型計(jì)算量。其次,在特征提取與特征融合網(wǎng)絡(luò)之間增加通道注意力機(jī)制,提升模型檢測(cè)性能。最后,在特征融合網(wǎng)絡(luò)中,優(yōu)化通道信息融合方式,使用雙向特征金字塔網(wǎng)絡(luò)替換Concatenate,增加信息融合通道,持續(xù)提升模型性能。實(shí)驗(yàn)結(jié)果表明:與原始模型相比,在黃花成熟度檢測(cè)中,改進(jìn)后的LSEB YOLO v7模型參數(shù)量和浮點(diǎn)運(yùn)算量分別減少約2.0×106和7.7×109。訓(xùn)練時(shí)長(zhǎng)由8.025h降低至7.746h,模型體積壓縮約4MB。同時(shí),訓(xùn)練精確率和召回率分別提升約0.64個(gè)百分點(diǎn)和0.14個(gè)百分點(diǎn),mAP@0.5和mAP@0.5:0.95分別提升約1.84個(gè)百分點(diǎn)和1.02個(gè)百分點(diǎn)。此外,調(diào)和均值性能保持不變,均為84.00%。LSEB YOLO v7算法可均衡模型復(fù)雜性與性能,為黃花成熟度檢測(cè)和智能化采摘設(shè)備提供技術(shù)支持。

    Abstract:

    To address the problems of low efficiency of traditional manual identification and inconsistent identification standards, a ripening identification method for Hemerocallis citrina baroni based on lightweight and efficient layer aggregation network LSEB YOLO v7 was proposed. Firstly, lightweight convolution was introduced to lighten the efficient layer aggregation network and transition module to reduce the model computation. Secondly, the channel attention mechanism was added between the feature extraction and feature fusion networks to improve the model detection performance. Finally, in the feature fusion network, the channel information fusion method was optimized, and the bi-directional feature pyramid network was used to replace concatenate to increase the information fusion channels and continuously improve the model performance. The experimental results showed that compared with the original algorithm, in the Hemerocallis citrina baroni maturity detection, the number of parameters and floating-point operations of the improved LSEB YOLO v7 algorithm were reduced by about 2.0×106 and 7.7×109, respectively, and the training time was reduced from 8.025h to 7.746h, and the model volume was compressed by about 4MB. Meanwhile, the training precision and recall were improved by about 0.64 percentage and 0.14 percentage, respectively. The mAP@0.5 and mAP@0.5:0.95 were improved by about 1.84 percentages and 1.02 percentages, respectively. In addition, the harmonized mean remained unchanged at 84.00%. It was evident that the proposed LSEB YOLO v7 algorithm solved the problem of the paradox between model complexity and performance, and provided technical support for intelligent ripening and harvesting inspection equipment for Hemerocallis citrina baroni.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

吳利剛,陳樂,周倩,史建華,馬宇波.基于輕量化高效層聚合網(wǎng)絡(luò)的黃花成熟度檢測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(2):268-277. WU Ligang, CHEN Le, ZHOU Qian, SHI Jianhua, MA Yubo. Maturity Detection Method for Hemerocallis citrina baroni Based on Lightweight and Efficient Layer Aggregation Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(2):268-277.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-10-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-02-10
  • 出版日期:
文章二維碼