亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于CRV-YOLO的蘋果中心花和邊花識別方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

財政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項目(CARS-27)


Recognition of Apple King Flower and Side Flower Based on CRV-YOLO
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    蘋果樹疏花是果園生產(chǎn)管理中的重要環(huán)節(jié)。準(zhǔn)確高效地識別蘋果中心花和邊花,是研發(fā)智能疏花機器人的前提。針對蘋果疏花作業(yè)中的實際需求,提出了一種基于CRV-YOLO的蘋果中心花和邊花識別方法。本文基于YOLO v5s模型進行了如下改進:將C-CoTCSP結(jié)構(gòu)融入Backbone,更好地學(xué)習(xí)上下文信息并提高了模型特征提取能力,提高了模型對外形相似和位置關(guān)系不明顯的中心花和邊花的檢測性能。在Backbone中添加改進RFB結(jié)構(gòu),擴大特征提取感受野并對分支貢獻度進行加權(quán),更好地利用了不同尺度特征。采用VariFocal Loss損失函數(shù),提高了模型對遮擋等場景下難識別樣本檢測能力。在3個品種1837幅圖像數(shù)據(jù)集上進行了實驗,結(jié)果表明,CRV-YOLO的精確率、召回率和平均精度均值分別為95.6%、92.9%和96.9%,與原模型相比,分別提高3.7、4.3、3.9個百分點,模型受光照變化和蘋果品種影響較小。與Faster R-CNN、SSD、YOLOX、YOLO v7模型相比,CRV-YOLO的精確率、平均精度均值、模型內(nèi)存占用量和復(fù)雜度性能最優(yōu),召回率接近最優(yōu)。研究成果可為蘋果智能疏花提供技術(shù)支持。

    Abstract:

    Apple tree thinning is an important step in orchard production management. Accurate and efficient recognition of apple king flowers and side flowers is the premise of the development of intelligent flower thinning robot. According to the actual demand of apple flower thinning, a method for recognizing king flowers and side flowers of apple based on CRV-YOLO was proposed. Based on YOLO v5s model, the following improvements were made: firstly, C-CoTCSP structure was integrated into Backbone to better learn contextual information and improve the detection performance of the model for king flowers and side flowers that were similar and the position relationship was not obvious. Then an improved RFB structure was added to the Backbone, with which the receptive field of feature extraction was expanded and the branch contribution degree was weighted to make better use of different scale features. Finally, VariFocal Loss loss function was used to improve the detection ability of the model for samples in occlusion and other scenes. Experiments were conducted on a dataset of 1837 images from three varieties. The results showed that the precision, recall and mAP of the proposed model were 95.6%, 92.9% and 96.9%, respectively, which were 3.7 percentage points, 4.3 percentage points and 3.9 percentage points higher than those of the original model. The model was less affected by light changes and apple varieties. Compared with that of Faster R-CNN, SSD, YOLOX, and YOLO v7, precision, the mAP and model size and complexity performance of CRV-YOLO were optimal, and recall was close to optimal. The research results can provide technical support for apple intelligent flower thinning.

    參考文獻
    相似文獻
    引證文獻
引用本文

司永勝,孔德浩,王克儉,劉麗星,楊欣.基于CRV-YOLO的蘋果中心花和邊花識別方法[J].農(nóng)業(yè)機械學(xué)報,2024,55(2):278-286. SI Yongsheng, KONG Dehao, WANG Kejian, LIU Lixing, YANG Xin. Recognition of Apple King Flower and Side Flower Based on CRV-YOLO[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(2):278-286.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-02-10
  • 出版日期:
文章二維碼