亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于YOLO v8n-seg和改進Strongsort的多目標小鼠跟蹤方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(U21A20205)、湖北省洪山實驗室重大項目(2022hszd024)和山東省重點研發(fā)計劃項目(2022CXGC010609)


Multi-object Mice Tracking Based on YOLO v8n-seg and Improved Strongsort
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    多目標小鼠跟蹤是小鼠行為分析的基本任務(wù),是研究社交行為的重要方法。針對傳統(tǒng)小鼠跟蹤方法存在只能跟蹤單只小鼠以及對多目標小鼠跟蹤需要對小鼠進行標記從而影響小鼠行為等問題,提出了一種基于實例分割網(wǎng)絡(luò)YOLO v8n-seg和改進Strongsort相結(jié)合的多目標小鼠無標記跟蹤方法。使用RGB攝像頭采集多目標小鼠的日常行為視頻,標注小鼠身體部位分割數(shù)據(jù)集,對數(shù)據(jù)集進行增強后訓(xùn)練YOLO v8n-seg實例分割網(wǎng)絡(luò),經(jīng)過測試,模型精確率為97.7%,召回率為98.2%,mAP50為99.2%,單幅圖像檢測時間為3.5ms,實現(xiàn)了對小鼠身體部位準確且快速地分割,可以滿足Strongsort多目標跟蹤算法的檢測要求。針對Strongsort算法在多目標小鼠跟蹤中存在的跟蹤錯誤問題,對Strongsort做了兩點改進:對匹配流程進行改進,將未匹配上目標的軌跡和未匹配上軌跡的目標按歐氏距離進行再次匹配;對卡爾曼濾波進行改進,將卡爾曼濾波中表示小鼠位置和運動狀態(tài)的小鼠身體輪廓外接矩形框替換為以小鼠身體輪廓質(zhì)心為中心、對角線為小鼠體寬的正方形框。經(jīng)測試,改進后Strongsort算法的ID跳變數(shù)為14,MOTA為97.698%,IDF1為85.435%,MOTP為75.858%,與原Strongsort相比,ID跳變數(shù)減少88%,MOTA提升3.266個百分點,IDF1提升27.778個百分點,與Deepsort、ByteTrack和Ocsort相比,在MOTA和IDF1上均有顯著提升,且ID跳變數(shù)大幅降低,結(jié)果表明改進Strongsort算法可以提高多目標無標記小鼠跟蹤的穩(wěn)定性和準確性,為小鼠社交行為分析提供了一種新的技術(shù)途徑。

    Abstract:

    Multiple-object tracking of mice is a fundamental task in behavioral analysis and an important method for studying social behavior. In response to the limitations of traditional mouse tracking methods, such as the ability to track only a single mouse and the need for mouse labeling to track multiple-object mice, which affects mouse behavior, an unlabeled multiple-object mice tracking method was proposed based on the combination of instance segmentation network YOLO v8n-seg and improved Strongsort. RGB cameras were used to capture daily behavior videos of multiple-object mice, and a dataset for segmenting mouse body parts was annotated. After augmenting the dataset, the YOLO v8n-seg instance segmentation network was trained. The model achieved a precision of 97.7%, recall of 98.2%, mAP50 of 99.2%, and single-image detection time of 3.5ms. It accurately and quickly segmented mouse body parts, meeting the detection requirements of the Strongsort multi-object tracking algorithm. To address tracking errors in the Strongsort algorithm for multiple-object mice tracking, two improvements were made. Firstly, the matching process was improved by re-matching trajectories that did not match objects and unmatched objects based on Euclidean distance. Secondly, the Kalman filter was improved by replacing the rectangular bounding box representing the mouse position and motion state in the Kalman filter with a square box centered on the centroid of the mouse body contour and with a diagonal equal to the mouse body width. After testing, the improved Strongsort algorithm showed an ID switches of 14, MOTA of 97.698%, IDF1 of 85.435%, and MOTP of 75.858%. Compared with the original Strongsort, the ID switches count was reduced by 88%, MOTA was improved by 3.266 percentage points, and IDF1 was improved by 27.778 percentage points. Compared with Deepsort, ByteTrack, and Ocsort, there was a significant improvement in MOTA and IDF1, and the ID switches was greatly reduced. These results indicated that the improved Strongsort algorithm can enhance the stability and accuracy of unlabeled multiple-object mouse tracking, providing a technical approach for analyzing social behavior in mice.

    參考文獻
    相似文獻
    引證文獻
引用本文

梁秀英,賈學(xué)鎮(zhèn),何磊,王翔宇,劉巖,楊萬能.基于YOLO v8n-seg和改進Strongsort的多目標小鼠跟蹤方法[J].農(nóng)業(yè)機械學(xué)報,2024,55(2):295-305,345. LIANG Xiuying, JIA Xuezhen, HE Lei, WANG Xiangyu, LIU Yan, ANG Wanneng. Multi-object Mice Tracking Based on YOLO v8n-seg and Improved Strongsort[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(2):295-305,345.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-07-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-02-10
  • 出版日期:
文章二維碼