亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)YOLO v5的皮蛋裂紋在線檢測方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金面上項(xiàng)目(32072302)和湖北省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2023BBB036)


Crack Detection Method for Preserved Eggs Based on Improved YOLO v5 for Online Inspection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了解決裂紋皮蛋分選中存在的效率低、人力成本高等問題,提出了一種基于改進(jìn)YOLO v5的皮蛋裂紋在線檢測方法。使用EfficientViT網(wǎng)絡(luò)替換主干特征提取網(wǎng)絡(luò),并采用遷移學(xué)習(xí)對網(wǎng)絡(luò)進(jìn)行訓(xùn)練,分別得到Y(jié)OLO v5n_EfficientViTb0和 YOLO v5s_EfficientViTb1兩個模型。YOLO v5n_EfficientViTb0為輕量化模型,相較于改進(jìn)前參數(shù)量減少14.8%,浮點(diǎn)數(shù)計(jì)算量減少26.8%;YOLO v5s_EfficientViTb1為高精度檢測模型,平均精度均值為878%。采用GradCAM++對模型可視化分析,得出改進(jìn)模型減少了對背景區(qū)域的關(guān)注度,證明了改進(jìn)模型的有效性。設(shè)計(jì)了視頻幀的目標(biāo)框匹配算法,實(shí)現(xiàn)了視頻中皮蛋的目標(biāo)追蹤,依據(jù)皮蛋的檢測序列實(shí)現(xiàn)了對皮蛋的定位和裂紋與否的判別。輕量化模型的判別準(zhǔn)確率為92.0%,高精度模型的判別準(zhǔn)確率為943%。研究結(jié)果表明,改進(jìn)得到的輕量化模型為運(yùn)算能力較差的皮蛋裂紋在線檢測裝備提供了解決方案,改進(jìn)得到的高精度模型為生產(chǎn)要求更高的皮蛋裂紋在線檢測裝備提供了技術(shù)支持。

    Abstract:

    With the aim to address the issues of low efficiency and high labor costs in crack detection and sorting of preserved eggs, a method for online crack detection based on an improved version of YOLO v5 was proposed. The backbone feature extraction network was replaced with the EfficientViT network, and the network was trained by using transfer learning, resulting in two models: YOLO v5n_EfficientViTb0 and YOLO v5s_EfficientViTb1. YOLO v5n_EfficientViTb0 served as a lightweight model, reducing the parameter size by 148% and the floating point operations by 268% compared with that of the original model. YOLO v5s_EfficientViTb1, on the other hand, was a high-precision detection model with an average precision mean of 878%. Through the utilization of GradCAM++ for model visualization and analysis, it was discovered that the improved model demonstrated a decreased focus on the background region. This finding served as evidence supporting the effectiveness of the enhancements implemented in the model. Moreover, a target box matching algorithm was designed for video frames to enable object tracking of preserved eggs in videos. Based on the detection sequence of preserved eggs, the algorithm achieved localization of the eggs and discrimination between cracked and intact ones. The lightweight model achieved a discrimination accuracy of 92.0%, while the high-precision model achieved an accuracy of 94.3%. These research findings indicated that the improved lightweight model provided a solution for preserved egg crack detection equipment with lower computational capabilities, while the improved high-precision model offered technical support for preserved egg crack detection equipment with higher production requirements.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

湯文權(quán),陳灼廷,王東橋,范維,王巧華.基于改進(jìn)YOLO v5的皮蛋裂紋在線檢測方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2024,55(2):384-392. TANG Wenquan, CHEN Zhuoting, WANG Dongqiao, FAN Wei, WANG Qiaohua. Crack Detection Method for Preserved Eggs Based on Improved YOLO v5 for Online Inspection[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(2):384-392.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-02-10
  • 出版日期:
文章二維碼