亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于ASTUKF的分布式農業(yè)車輛路面參數辨識方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

江蘇省現代農機裝備與技術示范與推廣項目(NJ2019-29)和國家重點研發(fā)計劃項目(2016YFD0701003)


Road Parameters Identification Method for Distributed Agricultural Vehicle Based on ASTUKF
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對分布式驅動農業(yè)車輛在路面參數辨識過程中,因路面環(huán)境變化出現的狀態(tài)模型誤差和時變噪聲,導致辨識結果發(fā)散的問題,提出了基于自適應強跟蹤無跡卡爾曼濾波(Adaptive strong tracking unscented Kalman filter, ASTUKF)的辨識方法。與傳統(tǒng)內燃機農業(yè)車輛相比,分布式驅動可以直接獲取驅動輪的狀態(tài)信息,結合含有峰值附著系數和極限滑轉率的μ-s曲線模型,建立了無跡卡爾曼濾波(Unscented Kalman filter, UKF)辨識算法的狀態(tài)方程和量測方程。同時,將強跟蹤濾波(Strong tracking filter, STF)和自適應濾波(Adaptive filter, AF)引入辨識算法,用以提高對多變環(huán)境的識別精度和魯棒性,并采用奇異值分解(Singular value decomposition, SVD)解決了迭代過程中出現的非正定矩陣的問題。仿真試驗結果表明,在突變噪聲環(huán)境工況下,ASTUKF辨識結果可以快速收斂至目標值附近,且不受突變噪聲的影響,各驅動輪峰值附著系數估計結果的平均絕對誤差(Mean absolute error, MAE)分別為0.0144、0.0267、0.0144、0.0267,極限滑轉率估計結果的MAE分別為0.0025、0.0028、0.0025、0.0028。實車試驗表明,在已耕地和未耕地的試驗路面上,ASTUKF辨識結果的均值95%置信區(qū)間能夠匹配測量值,整車的附著系數辨識結果為0.4061(未耕地)、0.3991(已耕地),極限滑轉率辨識結果0.1484(未耕地)、0.3600(已耕地),可為分布式電動農業(yè)車輛作業(yè)參數感知提供理論參考。

    Abstract:

    A method utilizing the adaptive strong tracking unscented Kalman filter (ASTUKF) was proposed to address the issue of divergent identification results caused by state model errors and time-varying noise resulting from changes in road environments during the terrain parameters identification of distributed drive agricultural vehicles. Compared with the traditional internal combustion engine agricultural vehicles, distributed drive agricultural vehicles can directly obtain state information of the driving wheel. And combining the μ-s model which contained adhesion coefficient and limit slip ratio, a state function and a measurement function of unscented Kalman filter (UKF) identification algorithm were established. At the same time, strong tracking filter (STF) and adaptive filter (AF) were introduced into the identification algorithm to improve identification accuracy and robustness against the changing environment, and singular value decomposition (SVD) was used to solve the problem of non-positive definite matrix in iterative process. The simulation test showed that under the condition of abrupt noise environment, the identification result of ASTUKF can quickly converge to target value, which was not affected by abrupt noise. Mean absolute errors (MAE) of the adhesion coefficient estimation results of each driving wheel were 0.0144, 0.0267, 0.0144 and 0.0267, respectively, and MAE of the limit slip ratio estimation results were 0.0025, 0.0028, 0.0025 and 0.0028, respectively. The real vehicle test showed that the 95% confidence interval of average identification result of ASTUKF can match the measured value on test road of cultivated and uncultivated road. The identification results of adhesion coefficient of the whole vehicle were 0.4061 (uncultivated road) and 0.3991 (cultivated road), and the identification results of limit slip ratio were 0.1484 (uncultivated road) and 0.3600 (cultivated road), which can provide a theoretical reference for the operation parameter perception of distributed electric agricultural vehicles.

    參考文獻
    相似文獻
    引證文獻
引用本文

孫晨陽,周俊,賴國梁.基于ASTUKF的分布式農業(yè)車輛路面參數辨識方法[J].農業(yè)機械學報,2024,55(2):401-414. SUN Chenyang, ZHOU Jun, LAI Guoliang. Road Parameters Identification Method for Distributed Agricultural Vehicle Based on ASTUKF[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(2):401-414.

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-07-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-02-10
  • 出版日期:
文章二維碼