亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于動(dòng)態(tài)擴(kuò)展鄰域蟻群算法的移動(dòng)機(jī)器人路徑規(guī)劃
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(62204168)、天津市科技計(jì)劃項(xiàng)目(20YDTPJC00160、21YDTPJC00780)、天津市教委科研計(jì)劃項(xiàng)目(2019KJ101、2017SK027)、天津市研究生科研創(chuàng)新項(xiàng)目(2022SKYZ033)和天津城建大學(xué)教育教學(xué)改革與研究重點(diǎn)項(xiàng)目(JG-ZD-22035、JG-ZD-22038)


Path Planning of Mobile Robots Based on Dynamic Extended Neighbourhoods Ant Colony Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對蟻群算法易陷入局部最優(yōu)、路徑轉(zhuǎn)折點(diǎn)多、收斂速度慢的問題,提出一種基于動(dòng)態(tài)擴(kuò)展鄰域蟻群算法(Dynamic extended neighbourhoods ant colony optimization,DENACO)。在螞蟻搜索方式上采用動(dòng)態(tài)擴(kuò)展鄰域方法,并定義新的信息素計(jì)算方式和增量規(guī)則,在取得更優(yōu)收斂路徑長度的同時(shí),減少路徑轉(zhuǎn)折點(diǎn)數(shù)量及路徑節(jié)點(diǎn)數(shù)量;引入自適應(yīng)調(diào)整因子改進(jìn)啟發(fā)函數(shù),提高算法的全局搜索能力,并設(shè)定迭代閾值,提升算法的收斂速度;提出一種路徑節(jié)點(diǎn)雙優(yōu)化策略,對規(guī)劃好的路徑進(jìn)一步優(yōu)化,提高路徑綜合質(zhì)量。不同復(fù)雜度及不同規(guī)模柵格地圖中的仿真實(shí)驗(yàn)表明,DENACO算法所規(guī)劃的路徑更優(yōu),路徑轉(zhuǎn)折點(diǎn)數(shù)量減少,收斂速度加快,路徑節(jié)點(diǎn)數(shù)量明顯減少,表明算法具有更高的可行性和適用性。

    Abstract:

    To solve the problems of ant colony algorithm in complex grid environment, such as local optimization, many turning points and slow convergence, dynamic extended neighbourhoods ant colony optimization (DENACO) algorithm was proposed. Firstly, the method of dynamic extended neighborhoods was applied in the ant search mode to obtain the optimal convergence path length and reduce the number of inflection points and the number of path nodes. Meanwhile, a computational method and increment rule of pheromone were defined to reduce space costs, and the upper and lower limits of pheromone were set to avoid premature convergence of the algorithm to local optimality. Secondly, the adaptive adjustment factor and target point factor were introduced into the heuristic function, and a weight coefficient was set to improve the global search ability of the algorithm. Moreover, an iteration threshold of the algorithm was set. When the iteration exceeded the threshold, the pheromone concentration factor and heuristic factor values were updated to improve the convergence speed of the algorithm. Finally, a double optimal strategy of nodes of path was proposed. Two optimization methods were used to further optimize the planned path, and the best was taken as the final optimization result to improve the comprehensive quality of the path. Simulation experiments on raster maps of different complexities and scales showed that compared with the traditional ant colony algorithm and other comparison algorithms, the path planned by DENACO algorithm was superior. It had a shorter path length, reduced number of inflection points, accelerated convergence speed, and significantly fewer path nodes. These results indicated that the DENACO algorithm was highly feasible and applicable.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

潘玉恒,奧日格拉,魯維佳,叢佳,王世通,陳陽.基于動(dòng)態(tài)擴(kuò)展鄰域蟻群算法的移動(dòng)機(jī)器人路徑規(guī)劃[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(2):423-432,449. PAN Yuheng, Aorigela, LU Weijia, CONG Jia, WANG Shitong, CHEN Yang. Path Planning of Mobile Robots Based on Dynamic Extended Neighbourhoods Ant Colony Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(2):423-432,449.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-07-04
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-02-10
  • 出版日期:
文章二維碼