亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

移動機(jī)器人視覺里程計(jì)技術(shù)研究綜述
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(51965029)、國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFB1306103)和云南省重大專項(xiàng)(202002AC080001)


Survey of Research on Visual Odometry Technology for Mobile Robots
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    隨著移動機(jī)器人技術(shù)不斷發(fā)展,里程計(jì)技術(shù)已經(jīng)成為移動機(jī)器人實(shí)現(xiàn)環(huán)境感知的關(guān)鍵技術(shù),其發(fā)展水平對提高機(jī)器人的自主化和智能化具有重要意義。首先,系統(tǒng)闡述了同步定位與地圖構(gòu)建(Simultaneous localization and mapping, SLAM)中激光SLAM和視覺SLAM的發(fā)展近況,闡述了經(jīng)典SLAM框架及其數(shù)學(xué)描述,簡要介紹了3類常見相機(jī)的相機(jī)模型及其視覺里程計(jì)的數(shù)學(xué)描述。其次,分別對傳統(tǒng)視覺里程計(jì)和深度學(xué)習(xí)里程計(jì)的研究進(jìn)展進(jìn)行系統(tǒng)闡述。對比分析了近10年來各類里程計(jì)算法的優(yōu)勢與不足。另外,對比分析了7種常用數(shù)據(jù)集的性能。最后,從精度、魯棒性、數(shù)據(jù)集、多模態(tài)等方面總結(jié)了里程計(jì)技術(shù)面臨的問題,從提高算法實(shí)時(shí)性、魯棒性等方面展望了視覺里程計(jì)的發(fā)展趨勢為:更加智能化、小型化新型傳感器的發(fā)展;與無監(jiān)督學(xué)習(xí)融合;語義表達(dá)技術(shù)的提高;集群機(jī)器人協(xié)同技術(shù)的發(fā)展。

    Abstract:

    With the continuous development of mobile robot technology, odometry technology has become a key technology for mobile robots to realize environmental perception, and its development level is of great significance to improving the autonomy and intelligence of robots. Firstly, the current development status of laser simultaneous localization and mapping (SLAM) and visual SLAM in simultaneous localization and mapping was systematically explained. The classic SLAM framework and its mathematical description were expounded, and the camera models of three common types of cameras and their mathematical description of visual odometry were briefly introduced. Secondly, the research progress of traditional visual odometry and deep learning odometry were systematically elaborated. The advantages and disadvantages of various mileage calculation methods in the past ten years were compared and analyzed. In addition, the performance of seven commonly used data sets was comparatively analyzed. Finally, the problems faced by odometry technology were summarized from the aspects of accuracy, robustness, data sets, and multi-modality, and five development trends of visual odometry were prospected from the aspects of improving the real-time performance and robustness of the algorithm. For the development of more intelligent and miniaturized new sensors, the integration with unsupervised learning, the improvement of semantic expression technology and the development of cluster robot collaboration technology were introduced.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

陳明方,黃良恩,王森,張永霞,陳中平.移動機(jī)器人視覺里程計(jì)技術(shù)研究綜述[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(3):1-20. CHEN Mingfang, HUANG Liang'en, WANG Sen, ZHANG Yongxia, CHEN Zhongping. Survey of Research on Visual Odometry Technology for Mobile Robots[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(3):1-20.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-07-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-10-10
  • 出版日期: