亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于SIRI和CNN的蘋果隱性損傷檢測方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

安徽省自然科學(xué)基金項目(2308085ME169)、安徽省高校科研計劃項目(2022AH050872)和農(nóng)業(yè)農(nóng)村部農(nóng)業(yè)傳感器重點實驗室開放項目(KLAS2022KF020)


Detection Method for Implicit Apple Damages Based on SIRI and CNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    蘋果從采摘到銷售過程中易發(fā)生機(jī)械損傷,需要及時剔除以避免腐爛變質(zhì)。然而機(jī)械損傷早期蘋果外觀顏色變化不明顯,通常表現(xiàn)為隱性損傷,檢測比較困難。提出了一種基于結(jié)構(gòu)光反射成像(SIRI)和卷積神經(jīng)網(wǎng)絡(luò)(CNN)的蘋果隱性損傷檢測方法。通過搭建SIRI系統(tǒng),采集待測蘋果調(diào)制的結(jié)構(gòu)光圖像,再利用三相位解調(diào)法提取交流分量,增強(qiáng)蘋果隱性損傷對比度;然后利用交流分量圖像制作蘋果隱性損傷數(shù)據(jù)集,并使用基于CNN的語義分割網(wǎng)絡(luò)FCN、UNet、HRNet、PSPNet、DeepLabv3+、LRASPP和SegNet訓(xùn)練損傷檢測模型,多組試驗結(jié)果表明上述模型均能有效地檢測出不同情況下的蘋果隱性損傷。其中HRNet模型精確率、召回率、F1值和平均交并比較高,分別為97.96%、97.52%、97.74%和97.58%,但檢測速度僅為60f/s;PSPNet模型檢測速度較快,可達(dá)到217f/s,但其檢測精度略低,精確率、召回率、F1值和平均交并比分別為97.10%、94.57%、95.82%和95.90%。

    Abstract:

    During the process from harvest to sales, apples are susceptible to mechanical damage, which can have detrimental effects on their quality and lead to rotting. Detecting and removing this damage in a timely manner is crucial to prevent further deterioration. However, early-stage mechanical damage in apples often manifests as subtle color changes, making it challenging to detect. To address this issue, an apple implicit damage detection method was presented based on structured-illumination reflectance imaging (SIRI) and convolutional neural network (CNN). By building an SIRI system to acquire modulated structured light images of the measured apples, and utilizing three-phase demodulation method to extract the alternating current component, the image contrast of the apple implicit damage can be enhanced. The dataset of apple implicit damages was produced by using the images of alternating current components. Several CNNbased semantic segmentation networks, including FCN, UNet, HRNet, PSPNet, DeepLabv3+, LRASPP, and SegNet were employed to train the damage detection models, respectively. Several groups of experimental results demonstrated that these models can effectively detect the apple implicit damages in different situations. In contrast, the precision (P), recall (R), F1 score, and mean intersection over union (MIoU) of the HRNet model were respectively 97.96%, 97.52%, 97.74% and 97.58%. However, its detection speed was only 60 frames per second. The PSPNet model had a faster detection speed, reaching up to 217 frames per second. However, it had slightly lower detection accuracy, with precision (P), recall (R), F1 score, and mean intersection over union (MIoU) of 97.10%, 94.57%, 95.82%, and 95.90%, respectively.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王玉偉,楊玲玲,朱浩杰,饒元,劉路,侯文慧.基于SIRI和CNN的蘋果隱性損傷檢測方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2024,55(3):383-391. WANG Yuwei, YANG Lingling, ZHU Haojie, RAO Yuan, LIU Lu, HOU Wenhui. Detection Method for Implicit Apple Damages Based on SIRI and CNN[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(3):383-391.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-07-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-12-18
  • 出版日期: