亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于輕量型網(wǎng)絡(luò)的無人機(jī)遙感圖像中茶葉枯病檢測(cè)方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(32372632、62273001)、安徽省高等學(xué)校自然科學(xué)研究重大項(xiàng)目(KJ2020ZD03)和安徽省自然科學(xué)基金項(xiàng)目(2208085MC60)


ightweight Network for Tea Leaf Blight Detection in UAV Remote Sensing Images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)無人機(jī)采集的茶葉枯病圖像中病斑差異大,病斑和背景之間相似性高等問題,設(shè)計(jì)了一個(gè)輕量型網(wǎng)絡(luò)LiTLBNet,用于準(zhǔn)確、實(shí)時(shí)地檢測(cè)野外茶園無人機(jī)圖像中的茶葉枯病。LiTLBNet使用輕量型的M-Backbone作為骨干網(wǎng)絡(luò),用來提取茶葉枯病病斑的可區(qū)分特征,減少因圖像中病斑的尺度、顏色和形狀的巨大差異而導(dǎo)致的漏檢。在LiTLBNet的LNeck結(jié)構(gòu)中引入了SE和ECA模塊,幫助網(wǎng)絡(luò)在通道維度上學(xué)習(xí)目標(biāo)的綜合特征,減少因病斑和背景之間的相似性造成的誤檢,同時(shí)刪除原基線網(wǎng)絡(luò)最大的特征圖,以減少計(jì)算量和模型大小。此外,本研究還通過旋轉(zhuǎn)、加噪聲、構(gòu)建合成圖像等方式來擴(kuò)充訓(xùn)練樣本數(shù)量,提高小樣本條件下LiTLBNet網(wǎng)絡(luò)泛化能力。實(shí)驗(yàn)結(jié)果表明,利用LiTLBNet檢測(cè)無人機(jī)遙感圖像中茶葉枯病的精度為75.1%,平均精度均值為78.5%,與YOLO v5s接近。然而,LiTLBNet內(nèi)存占用量?jī)H2.0MB,是YOLO v5s網(wǎng)絡(luò)的13.9%。LiTLBNet網(wǎng)絡(luò)可用于對(duì)茶葉枯病進(jìn)行實(shí)時(shí)、準(zhǔn)確的無人機(jī)遙感監(jiān)測(cè)。

    Abstract:

    Aiming at the problems of large differences in disease spots and high similarity between disease spots and background in tea leaf blight (TLB) disease images collected by UAV, a lightweight network LiTLBNet for the accurate and real-time detection of TLB disease in UAV images of tea gardens in the field was designed. A lightweight M-Backbone was used to extract the distinguishing features of the TLB spots, which reduced missed detections caused by the large differences in the scales, colors, and shapes of the disease spots in the images. The SE and ECA modules were introduced into the LNeck of LiTLBNet to help the network learn more comprehensive features in the channel dimension and reduce false detections caused by the similarities between disease spots and backgrounds. The largest feature maps were deleted to reduce the calculations and the network size, and furthermore, the training samples were also augmented by rotating them by different angles, adding noise to the images, and constructing synthetic images to improve the generalization of LiTLBNet by using a small number of samples. Experimental results showed that the precision of LiTLBNet was 75.1%, and the mAP was 78.5%, which was similar to that of YOLO v5s. However, the size of LiTLBNet was only 2.0MB, which was 13.9% of the size of YOLO v5s. The proposed method can be effectively used for the real-time and accurate UAV remote sensing monitoring of TLB disease in tea gardens with a relatively large area.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

胡根生,謝一帆,鮑文霞,梁棟.基于輕量型網(wǎng)絡(luò)的無人機(jī)遙感圖像中茶葉枯病檢測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(4):165-175. HU Gensheng, XIE Yifan, BAO Wenxia, LIANG Dong. ightweight Network for Tea Leaf Blight Detection in UAV Remote Sensing Images[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(4):165-175.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-09-05
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-04-10
  • 出版日期: