亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于多模型融合策略的溫室番茄光合速率預(yù)測方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

遼寧省教育廳面上項目(LJKMZ20221035、LJKZ0683)、遼寧省科技廳面上項目(2023-MS-212)、國家自然科學(xué)基金項目(32001415、61673281)和遼寧省自然基金指導(dǎo)計劃項目(2019-ZD-0720)


Prediction of Photosynthetic Rate of Greenhouse Tomatoes Based on Multi-model Fusion Strategy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    溫室番茄光合速率的準(zhǔn)確預(yù)測對于番茄的生長和產(chǎn)量評估具有重要意義。然而,由于溫室環(huán)境的復(fù)雜性和多變性,傳統(tǒng)的光合速率預(yù)測模型往往難以滿足精準(zhǔn)預(yù)測的需求。因此,為了進(jìn)一步提高預(yù)測模型的準(zhǔn)確性和穩(wěn)定性,本研究提出了一種基于多模型融合策略的溫室番茄光合速率預(yù)測方法。首先,采集溫濕度、光照強度、CO2濃度不同組合下的番茄光合速率,構(gòu)建樣本集,并采用五折交叉驗證法(Cross-Validation)對數(shù)據(jù)進(jìn)行預(yù)處理。以預(yù)處理的數(shù)據(jù)為基礎(chǔ),分別基于粒子群優(yōu)化支持向量機(PSO-SVR)、布谷鳥優(yōu)化極限學(xué)習(xí)機(CS-ELM)和北方蒼鷹優(yōu)化高斯過程回歸(NGO-GPR)算法建立番茄光合速率預(yù)測模型對光合速率進(jìn)行初步預(yù)測,然后采用Stacking算法通過基于決策樹的集成學(xué)習(xí)模型(XGBoost)組合各基礎(chǔ)模型的預(yù)測結(jié)果,進(jìn)而實現(xiàn)多模型融合。仿真分析結(jié)果表明,與單一預(yù)測模型相比,基于多模型融合的光合速率預(yù)測模型充分發(fā)揮了各基礎(chǔ)模型的優(yōu)勢,可以進(jìn)一步提高光合速率預(yù)測的準(zhǔn)確性和穩(wěn)定性,該模型驗證集MAE為0.5697μmol/(m2·s),RMSE為0.7214μmol/(m2·s)。因此,本文提出的方法在溫室作物光合速率預(yù)測方面具有一定的優(yōu)勢,可為溫室番茄等作物光環(huán)境優(yōu)化調(diào)控提供一定的理論基礎(chǔ)和技術(shù)支撐。

    Abstract:

    Accurately predicting the photosynthetic rate of greenhouse tomatoes is crucial for evaluating their growth and yield. However, due to the complexity and variability of the greenhouse environments, traditional photosynthetic rate prediction models often fail to meet the demand of precise prediction. To address this issue and enhance the accuracy and stability of prediction model, a multi-model fusion strategy for predicting the photosynthetic rate of greenhouse tomatoes was proposed. Initially, the photosynthetic rate of tomato was collected under various combinations of temperature, humidity, light intensity, and carbon dioxide concentration, and a sample set was constructed. The data was preprocessed by using five-fold cross-validation method. Based on preprocessed data, prediction models for tomato photosynthetic rate were established by using particle swarm optimization-support vector regression (PSO-SVR), cuckoo search optimization-extreme learning machine (CS-ELM), and northern goshawk optimization-Gaussian process regression (NGO-GPR) algorithms, and preliminary predictions were made. Next, the Stacking algorithm was used to combine the predictions of the basic models through training an ensemble tree meta-model (XGBoost), thereby achieving multi-model fusion. The results of simulation analysis demonstrated that compared with a single prediction model, the photosynthetic rate prediction model based on multi-model fusion effectively utilized the advantages of the basic models, enhancing the accuracy and stability of predicting photosynthetic rate. The MAE of the validation set for the model was 0.5697μmol/(m2·s), and the RMSE was 0.7214μmol/(m2·s). Therefore, the method proposed had significant advantages in predicting the photosynthetic rate of greenhouse crops, and can provide theoretical basis and technical support for the management and control of the light environment of greenhouse tomatoes and other crops.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉潭,朱洪銳,袁青云,王永剛,張大鵬,丁小明.基于多模型融合策略的溫室番茄光合速率預(yù)測方法[J].農(nóng)業(yè)機械學(xué)報,2024,55(4):337-345. LIU Tan, ZHU Hongrui, YUAN Qingyun, WANG Yonggang, ZHANG Dapeng, DING Xiaomin. Prediction of Photosynthetic Rate of Greenhouse Tomatoes Based on Multi-model Fusion Strategy[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(4):337-345.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-08-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-04-10
  • 出版日期: