亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于頻域數(shù)據(jù)增強(qiáng)與輕量化YOLO v7模型的成熟期香梨目標(biāo)檢測(cè)方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(51466014)


Mature Stage Pear Detection Method Based on Frequency Domain Data Augmentation and Lightweight YOLO v7 Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為實(shí)現(xiàn)香梨自動(dòng)化采摘,本文以YOLO v7-S為基礎(chǔ)模型,針對(duì)果園中香梨果實(shí)、果葉和枝干之間相互遮擋,不易精準(zhǔn)檢測(cè)的問(wèn)題,設(shè)計(jì)了一種輕量化香梨目標(biāo)檢測(cè)M-YOLO v7-SCSN+F模型。該模型采用MobileNetv3作為骨干特征提取網(wǎng)絡(luò),引入?yún)f(xié)同注意力機(jī)制(Coordinate attention,CA)模塊,將YOLO v7-S中的損失函數(shù)CIoU替換為SIoU,并聯(lián)合Normalized Wasserstein distance (NWD)小目標(biāo)檢測(cè)機(jī)制,以增強(qiáng)網(wǎng)絡(luò)特征表達(dá)能力和檢測(cè)精度?;诟道锶~變換(Fourier transform,F(xiàn)T)的數(shù)據(jù)增強(qiáng)方法,通過(guò)分析圖像頻域信息和重建圖像振幅分量生成新的圖像數(shù)據(jù),從而提高模型泛化能力。實(shí)驗(yàn)結(jié)果表明,改進(jìn)的M-YOLO v7-SCSN+F模型在驗(yàn)證集上的平均精度均值(mAP)、精確率和召回率分別達(dá)到97.23%、97.63%和93.66%,檢測(cè)速度為69.39f/s,與Faster R-CNN、SSD、YOLO v3、YOLO v4、YOLO v5s、YOLO v7-S、YOLO v8n、RT-DETR-R50模型在驗(yàn)證集上進(jìn)行性能比較,其平均精度均值(mAP)分別提高14.50、26.58、3.88、2.40、1.58、0.16、0.07、0.86個(gè)百分點(diǎn)。此外,改進(jìn)的M-YOLO v7-SCSN+F模型內(nèi)存占用量與YOLO v8n和RT-DETR-R50檢測(cè)模型對(duì)比減少16.47、13.30MB。本文提出的檢測(cè)模型對(duì)成熟期香梨具有很好的目標(biāo)檢測(cè)效果,為背景顏色相近小目標(biāo)檢測(cè)提供參考,可為香梨自動(dòng)化采摘提供有效的技術(shù)支持。

    Abstract:

    In the practice of modern agricultural production, the method of harvesting agricultural products is gradually shifting towards mechanization and intelligence. An increasing number of robots are being introduced into actual production and progressively replacing traditional manual labor. However, in natural environments, factors such as weather,lighting,the similarity in color between fruits and their backgrounds,and mutual occlusion between fruits and branches significantly increased the difficulty of fruit target detection. To accurately detect pears in natural environments, a lightweight pear detection method M-YOLO v7-SCSN+F was designed based on the YOLO v7-S foundational model. This model introduced MobileNetv3 into the YOLO v7-S model as its backbone feature extraction network, thereby reducing the number of parameters in the network. It incorporated a coordinate attention (CA) mechanism in the model’s feature fusion layer to enhance the network’s feature representation capabilities. The loss function CIoU in YOLO v7-S was replaced with SIoU, which was used in conjunction with the normalized Wasserstein distance (NWD) mechanism for small target detection, further improving the detection accuracy for fragrant pears. Based on the Fourier transform (FT) data augmentation method, new image data was generated by analyzing the frequency domain information of images and reconstructing the amplitude components, thereby enhancing the model’s generalization ability. Experimental results showed that the improved M-YOLO v7-SCSN+F model achieved mean average precision (mAP), precision, and recall rates of 97.23%,97.63% and 93.66%,respectively,on the validation set,with a detection speed of 69.39 f/s. The proposed detection model improved performance compared with Faster R-CNN, SSD, YOLO v3, YOLO v4,YOLO v5s, YOLO v7-S, YOLO v8n and RT-DETR-R50 models on the validation set, with mean average precision (mAP) enhancements of 14.50, 26.58, 3.88, 2.40, 1.58, 0.16, 0.07 and 0.86 percentage points, respectively. Furthermore, the improved M-YOLO v7-SCSN+F model reduced its parameter count by 16.47MB and 13.30MB, respectively, when compared with the advanced YOLO v8n and RT-DETR-R50 detection models. The detection model introduced demonstrated a high degree of effectiveness in target detection for mature pears, offering a reference for detecting small objects with backgrounds of similar color, and provided effective technical support for the automation of pear harvesting.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

鄭文軒,楊瑛.基于頻域數(shù)據(jù)增強(qiáng)與輕量化YOLO v7模型的成熟期香梨目標(biāo)檢測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(5):244-253. ZHENG Wenxuan, YANG Ying. Mature Stage Pear Detection Method Based on Frequency Domain Data Augmentation and Lightweight YOLO v7 Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(5):244-253.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-02-04
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-03-25
  • 出版日期:
文章二維碼