亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于多季相分形特征的Landsat 8 OLI影像耕地信息提取方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021YFD1500203)


Cropland Information Extraction Method of Landsat 8 OLI Images Based on Multi-seasonal Fractal Features
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    利用遙感技術(shù)快速準(zhǔn)確地提取耕地信息是耕地保護(hù)的關(guān)鍵環(huán)節(jié)。以山東省商河縣為例,提出了一種基于多季相分形特征的Landsat 8 OLI影像耕地信息提取方法。首先采用毯子覆蓋法計(jì)算多季相遙感影像每個(gè)像元的上分形信號(hào)和下分形信號(hào),對(duì)比分析耕地和其他土地利用類型的分形特征,選取上分形信號(hào)的第3尺度作為特征尺度,提取商河縣耕地空間分布特征;其次采用同時(shí)期的土地利用矢量數(shù)據(jù)、Esri land cover數(shù)據(jù)和統(tǒng)計(jì)數(shù)據(jù)進(jìn)行耕地信息提取精度評(píng)價(jià);最后分別設(shè)置多季相分形提取與單季相分形提取、現(xiàn)有土地利用數(shù)據(jù)產(chǎn)品的對(duì)比實(shí)驗(yàn),并基于點(diǎn)位匹配度和面積匹配度進(jìn)行評(píng)價(jià)。結(jié)果表明:多季相數(shù)據(jù)更能反映農(nóng)作物生長(zhǎng)的復(fù)雜性,有助于提高耕地信息的提取精度;不同土地利用類型在不同分形尺度的信號(hào)值各不相同,分形特征可以在不同尺度上清晰地刻畫出不同土地利用類型的分異性;基于矢量數(shù)據(jù)和Esri land cover數(shù)據(jù)評(píng)價(jià)的多季相分形特征耕地提取點(diǎn)位匹配度為87.13%和89.83%,面積匹配度為99.73%和97.91%,均比單季相分形提取結(jié)果精度高;綜合考慮點(diǎn)位匹配度、面積匹配度和空間分布特征,研發(fā)方法能有效區(qū)分耕地和其他土地利用類型,提取結(jié)果更優(yōu),且與統(tǒng)計(jì)數(shù)據(jù)有更高的一致性。該方法可準(zhǔn)確提取耕地信息,為耕地的動(dòng)態(tài)監(jiān)測(cè)和損害評(píng)估提供技術(shù)支撐。

    Abstract:

    The rapid and accurate extraction on cropland information by using remote sensing technology is a key aspect of cropland protection. Taking Shanghe County of Shandong Province as an example, a cropland information extraction method of Landsat 8 OLI images based on multi-seasonal fractal features was proposed. Firstly, the upper fractal signal and lower fractal signal of each pixel of multi-seasonal remote sensing images were calculated by using a blanket covering method, and the fractal characteristics of cropland and other land use types were compared and analyzed. The third scale of the upper fractal signal was selected as the feature scale to extract the spatial distribution of cropland in Shanghe County. Secondly, the land use vector data, Esri land cover data and statistics at the same period were used to evaluate the extraction accuracy of cropland information. Finally, comparative experiments between multi-seasonal fractal extraction with the single season fractal extraction and the existing land use data products were set up to evaluate the accuracies based on the point matching degree and area matching degree, respectively. The results showed that the multi-seasonal data can better reflect the complexity of crop growth and improve the extraction accuracy of cropland information. Different land use types had different signal values at different fractal scales, and their fractal features can clearly depict the differentiations among them at different scales. The evaluated point matching degree and area matching degree of cropland extraction results by using multi-seasonal fractal features based on the land use vector data and Esri land cover data were 87.13% and 89.83%, 99.73% and 97.91%, respectively, which were higher than that of single season fractal extraction. Considering the point matching degree, area matching degree and spatial distribution characteristics, the research method could effectively distinguish cropland and other land use types, which had much better extraction results and a higher consistency with the statistical data. The method developed can accurately extract the cropland information and provide technical supports for the dynamic monitoring and damage assessment of cropland.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

孟鳳,朱慶偉,董士偉,劉玉,張欣欣,潘瑜春.基于多季相分形特征的Landsat 8 OLI影像耕地信息提取方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(6):168-177. MENG Feng, ZHU Qingwei, DONG Shiwei, LIU Yu, ZHANG Xinxin, PAN Yuchun. Cropland Information Extraction Method of Landsat 8 OLI Images Based on Multi-seasonal Fractal Features[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(6):168-177.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-10-29
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-06-10
  • 出版日期: