亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于無人機多維數(shù)據(jù)集的森林地上生物量估測模型研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

中國地質(zhì)調(diào)查局地質(zhì)調(diào)查項目(DD20243093)和林業(yè)科學(xué)技術(shù)推廣項目([2019]06)


Development of Forest Aboveground Biomass Estimation Model Based on Multidimensional Dataset of UAV
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    森林地上生物量(Aboveground biomass,AGB)是評價森林生長情況的重要指標(biāo)?;跀?shù)字航空攝影(Digital aerial photography,DAP)生成的二維和三維數(shù)據(jù),分別計算了41個點云高度變量和16個可見光植被指數(shù),利用6種回歸算法(隨機森林(RF)、袋裝樹(BT)、支持向量回歸(SVR)、Cubist、類別型特征提升(CatBoost)、極端梯度提升(XGBoost))分別構(gòu)建了單一變量集和綜合變量集AGB估測模型,探索了不同變量對于AGB估測模型的貢獻(xiàn)。研究結(jié)果表明光譜數(shù)據(jù)集和點云數(shù)據(jù)集AGB預(yù)測模型精度最高分別為Cubist和XGBoost,R2分別為0.5309和0.6395。組合數(shù)據(jù)集最高精度模型為XGBoost,R2達(dá)到0.7601, XGBoost模型具有更高的AGB估測穩(wěn)定性。研究還表明6種機器學(xué)習(xí)模型的貢獻(xiàn)主要取決于所考慮的回歸方法,所選擇的特征個數(shù)和特征對模型的重要性在不同的模型中并不一致。DOM光譜特征在AGB的估測中具有更高的重要性??傮w來說,二維和三維數(shù)據(jù)的結(jié)合能夠有效提高森林AGB估測精度,基于無人機傾斜攝影獲取的RGB影像能夠?qū)崿F(xiàn)森林AGB的快速無損估計。

    Abstract:

    Forest aboveground biomass (AGB) is an important indicator for evaluating forest growth. Based on the 2D and 3D data generated by digital aerial photography (DAP), totally 41 point clouds height variables and 16 visible light vegetation indices were calculated respectively, and AGB estimation models were developed with single variable set and comprehensive variable set respectively by using six regression algorithms (random forest, RF;bagged tree, BT;support vector regression, SVR;Cubist;categorical boosting,CatBoost;extreme gradient boosting,XGBoost) to explore the contribution of different variables to the AGB estimation model. The results showed that the highest accuracy AGB prediction models for spectral and point cloud datasets were Cubist and XGBoost, with R2 of 0.5309 and 0.6395, respectively, and the highest accuracy model for the combined dataset was XGBoost, with R2 of 0.7601, and the XGBoost model had a higher stability of AGB estimation. The result also showed that the contribution of the six machine learning models mainly depended on the regression method considered, and the number of features chosen and the importance of the features to the model were not consistent across the models. DOM spectral features had a higher importance in the estimation of AGB. Overall, the combination of 2D and 3D data can effectively improve the accuracy of forest AGB estimation, and the RGB images acquired based on UAV tilt photography can realize the fast and nondestructive estimation of forest AGB.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

孫釗,謝運鴻,王寶瑩,譚軍,王軼夫,孫玉軍.基于無人機多維數(shù)據(jù)集的森林地上生物量估測模型研究[J].農(nóng)業(yè)機械學(xué)報,2024,55(6):186-195,236. SUN Zhao, XIE Yunhong, WANG Baoying, TAN Jun, WANG Yifu, SUN Yujun. Development of Forest Aboveground Biomass Estimation Model Based on Multidimensional Dataset of UAV[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(6):186-195,236.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-10-16
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-06-10
  • 出版日期: