亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于超分辨率重建與機器學(xué)習(xí)的油菜苗情監(jiān)測方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2021YFD1600502)


Oilseed Rape Seedling Monitoring Method Based on Super-resolution Reconstruction and Machine Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為優(yōu)化養(yǎng)分管理和確保植株正常生長,以無人機遙感技術(shù)高效且非破壞采集田間作物苗情信息,監(jiān)測油菜苗期的葉面積指數(shù)(LAI)與葉綠素相對含量(SPAD)。針對無人機因飛行高度與圖像分辨率相互制約,監(jiān)測效率與監(jiān)測精度難以兼顧的問題,采用超分辨率重建方法,融合較低飛行高度拍攝高分辨率影像,重建較高飛行高度拍攝影像,建模完成后可通過拍攝飛行影像監(jiān)測LAI和SPAD。試驗設(shè)置3個氮肥梯度、3個播期、3個種植密度處理,在苗期利用無人機分別采集20m及40m 2個飛行高度的油菜苗影像,采用SRRestnet方法,對40m影像進(jìn)行超分辨率重建?;?0m、40m及40m重建影像中提取的3種特征組合,利用偏最小二乘回歸(PLSR)、隨機森林(RF)、支持向量回歸(SVR)3種機器學(xué)習(xí)方法對LAI和SPAD進(jìn)行監(jiān)測。結(jié)果表明,超分辨率重建后的圖像在表型苗情監(jiān)測中表現(xiàn)出良好效果,PLSR監(jiān)測LAI、RF監(jiān)測SPAD的監(jiān)測精度最高,且40m重建圖像的作業(yè)效率相比于20m圖像提高48.6%。

    Abstract:

    In order to optimize nutrient management and ensure normal plant growth, UAV remote sensing technology was used to efficiently and non-destructively collect crop seedling information in the field, and to monitor the leaf area index (LAI) and the relative chlorophyll content (SPAD) of oilseed rape during the seedling stage. It is difficult to balance the monitoring efficiency and monitoring accuracy due to the constraints of flight altitude and image resolution of UAVs. A super-resolution reconstruction method was adopted to integrate the high-resolution images taken at lower flight altitudes and reconstruct the images taken at higher flight altitudes, so that LAI and SPAD could be monitored by the flight images taken after the modeling was completed. Three nitrogen fertilizer gradients, three sowing periods, and three planting densities were set up, and the UAV was used to collect the images of oilseed rape seedlings at 20m and 40m flight altitudes respectively in seedling stage, and SRRestnet method was used to analyze the seedling images at 40m and 40m flight altitudes respectively. SRRestnet method, and super-resolution reconstruction was performed on the 40m images. Based on the three combinations of features extracted from the 20m, 40m and 40m reconstructed images, three machine learning methods, namely partial least squares regression (PLSR), random forest (RF), and support vector regression (SVR), were utilized to monitor LAI and SPAD. The results showed that the super-resolution reconstructed images performed well in phenological seedling monitoring, and PLSR monitoring of LAI and RF monitoring of SPAD had the highest monitoring accuracy, and the operational efficiency of the 40m reconstructed images was 48.6% higher compared with that of the 20m images.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊揚,劉洋,蘇宸,趙杰,張強強,周廣生.基于超分辨率重建與機器學(xué)習(xí)的油菜苗情監(jiān)測方法[J].農(nóng)業(yè)機械學(xué)報,2024,55(6):196-201. YANG Yang, LIU Yang, SU Chen, ZHAO Jie, ZHANG Qiangqiang, ZHOU Guangsheng. Oilseed Rape Seedling Monitoring Method Based on Super-resolution Reconstruction and Machine Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(6):196-201.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-10-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-06-10
  • 出版日期: