亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于運動特征提取和2D卷積的魚類攝食行為識別研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

上海市崇明區(qū)農業(yè)科創(chuàng)項目(2021CNKC-05-06)、國家重點研發(fā)計劃項目(2023YFD2401304)和上海市水產動物良種創(chuàng)制與綠色養(yǎng)殖協(xié)同創(chuàng)新中心項目(2021科技02-12)


Recognition of Feeding Behavior of Fish Based on Motion Feature Extraction and 2D Convolution
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了促進漁業(yè)裝備智能化,近年來基于視頻流的魚類攝食行為識別研究受到了廣泛關注。針對基于視頻流的傳統(tǒng)識別方法模型過于復雜,難以在邊緣計算設備部署的問題,提出了一種輕量級的2D卷積運動特征提取網(wǎng)絡Motion-EfficientNetV2,該網(wǎng)絡以視頻流為輸入,能夠有效識別魚類攝食行為。提出的模型以EfficientNetV2為主干網(wǎng)絡,基于TEA和ECANet構建了運動特征提取模塊Motion,并將該模塊嵌入到EfficientNetV2的每個Fused-MBConv模塊中,使改進后的EfficientNetV2具有運動特征提取能力。同時使用ECANet對EfficientNetV2網(wǎng)絡中的MBConv進行改進,增強其通道特征提取能力。在此基礎上利用空洞卷積擴大感受野,提高大范圍特征提取能力。試驗結果表明,Motion-EfficientNetV2的參數(shù)量和浮點運算量分別為9.3×106和1.31×1010,優(yōu)于EfficientNetV2。在TSN-ResNet50、TSN-EfficientNetV2、C3D以及R3D模型上進行對比試驗,本文模型在降低參數(shù)量和浮點運算量的同時,使識別準確率提高到93.97%。該研究對于漁業(yè)裝備智能化升級和科學養(yǎng)殖具有推動作用。

    Abstract:

    In order to promote the intelligence of fishery equipment, video streaming-based fish feeding behaviour recognition has received extensive attention in recent years. The model of traditional recognition methods based on video streaming is too complex to be realized on edge computing devices. To address this problem, a lightweight 2D-convolutional motion feature extraction network, Motion-EfficientNetV2, was proposed which can effectively recognize fish feeding behaviour by using video streams as input. The proposed model used EfficientNetV2 as the backbone network, constructed the motion feature extraction module Motion based on TEA and ECANet, and embeded the Motion module into each Fused-MBConv module of EfficientNetV2, in order to give EfficientNetV2 the ability to extract motion features. The MBConv in the EfficientNetV2 network was also improved by using ECANet to enhance its channel feature extraction capability. Null convolution was used in Motion-EfficientNetV2 to expand the receptive field and improve the wide-range feature extraction capability. The experimental results showed that after introducing the designed Motion module and a series of improvements, the number of parameters and FLOPs of Motion-EfficientNetV2 was 9×106 and 1.31×1010, respectively, which were reduced compared with EfficientNetV2. Comparison experiments using the same dataset in the algorithmic models of TSN-ResNet50, TSN-EfficientNetV2, C3D, and R3D, respectively, showed that the present algorithm achieved an accuracy of 93.97% while the number of parameters and FLOPs were lower than the rest of the models. Therefore, the model proposed can effectively identify fish feeding behavior and guide aquaculturists to develop fish feeding strategies.

    參考文獻
    相似文獻
    引證文獻
引用本文

張錚,沈彥兵,張澤揚.基于運動特征提取和2D卷積的魚類攝食行為識別研究[J].農業(yè)機械學報,2024,55(6):246-253. ZHANG Zheng, SHEN Yanbing, ZHANG Zeyang. Recognition of Feeding Behavior of Fish Based on Motion Feature Extraction and 2D Convolution[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(6):246-253.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-10-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-06-10
  • 出版日期: