亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)凹點(diǎn)分割的小麥播種籽粒落種分布在線檢測(cè)方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

江蘇省科技計(jì)劃現(xiàn)代農(nóng)業(yè)項(xiàng)目(BE2022338)、江蘇省現(xiàn)代農(nóng)機(jī)裝備與技術(shù)示范推廣項(xiàng)目(NJ2022-10)和揚(yáng)州大學(xué)“高端人才支持計(jì)劃”項(xiàng)目


Online Detection Method for Wheat Seeding Distribution Based on Improved Concave Point Segmentation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)播種性能參數(shù)人工計(jì)算效率低及在線檢測(cè)軟件缺乏等問題,提出了一種基于圖像處理的小麥播種時(shí)籽粒落種分布在線檢測(cè)方法,建立了基于連通區(qū)域面積和輪廓周長(zhǎng)的粘連種子判據(jù),創(chuàng)建了改進(jìn)凹點(diǎn)分割粘連種子方法,對(duì)分割后的種子進(jìn)行計(jì)數(shù)與坐標(biāo)定位,實(shí)現(xiàn)落種均勻度、準(zhǔn)確度和離散度的計(jì)算檢測(cè)。搭建了落種分布檢測(cè)裝置并開發(fā)了檢測(cè)軟件,試驗(yàn)結(jié)果表明:在不同播量、播種行進(jìn)速度條件下,改進(jìn)凹點(diǎn)分割算法平均準(zhǔn)確率均在95%以上,相比凹點(diǎn)分割算法平均準(zhǔn)確率有明顯提高,說明該方法對(duì)種子顆??倲?shù)識(shí)別準(zhǔn)確率較高;隨著播量增加,種子粘連概率提高,出現(xiàn)假凹點(diǎn)幾率增大,算法準(zhǔn)確率降低;隨著播種行進(jìn)速度增加,圖像中種子變形和失真幾率增加,導(dǎo)致部分粘連種子難以分割或錯(cuò)誤分割,算法準(zhǔn)確率亦降低;播量及播種行進(jìn)速度對(duì)落種均勻度、準(zhǔn)確度、離散度的影響不顯著,與人工計(jì)算測(cè)量結(jié)果吻合,表明了該落種分布檢測(cè)方法的可行性。

    Abstract:

    An online detection method of seeding distribution during wheat sowing based on image processing was proposed to address problems such as low manual calculation efficiency of seeding performance parameters and lack of online detection software. A criterion for adhesive seeds based on connected region area and contour perimeter was established, and an improved concave point segmentation adhesive seed method was created to count and coordinate the segmented seeds, achieving calculation and detection of seeding uniformity, accuracy, and dispersion. A seeding test bench was built and detection software was developed. The testing results showed that at different seeding rates and seeding travel speeds, the average accuracy of the improved concave point segmentation algorithm was above 95%, which was significantly higher than that of the concave point segmentation algorithm, indicating that the method had high recognition accuracy for the total number of seed particles;as the seeding rate was increased, the probability of seed adhesion was increased, and the chance of false concave points was increased, resulting in lower algorithm accuracy;as the travel speed was increased, the probability of seed deformation and distortion in the image was increased, leading to some adhered seeds being difficult or incorrectly segmented, and the algorithm accuracy also was decreased;seeding rate and seeding travel speed had no significant effect on seeding uniformity, accuracy and dispersion, which agreed with the manual calculation and measurement results, demonstrating the feasibility of this online detection method for seeding performance.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

奚小波,趙杰,史揚(yáng)杰,瞿濟(jì)偉,甘浩,張瑞宏.基于改進(jìn)凹點(diǎn)分割的小麥播種籽粒落種分布在線檢測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(7):75-82. XI Xiaobo, ZHAO Jie, SHI Yangjie, QU Jiwei, GAN Hao, ZHANG Ruihong. Online Detection Method for Wheat Seeding Distribution Based on Improved Concave Point Segmentation[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(7):75-82.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-03-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-07-10
  • 出版日期: