亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

融合時(shí)序Sentinel數(shù)據(jù)多特征優(yōu)選的南方丘陵區(qū)油茶種植區(qū)提取
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

江西省自然科學(xué)基金項(xiàng)目(20232ACB203025)、江西省高校人文社科研究項(xiàng)目(JC21123)、自然資源部重點(diǎn)實(shí)驗(yàn)室開放基金項(xiàng)目(MEMI-2021-2022-10)和江西省自然科學(xué)基金青年項(xiàng)目(20224BAB213038)


Extraction of Camellia oleifera Planting Areas in Southern Hilly Area by Combining Multi-features of Time-series Sentinel Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    油茶作為江西省經(jīng)濟(jì)林樹種之一,也是江西省特色優(yōu)勢(shì)產(chǎn)業(yè),準(zhǔn)確獲取其空間分布在產(chǎn)量估算、生產(chǎn)管理和政策制定等方面具有重要意義。本研究針對(duì)南方多云多雨氣候?qū)е鹿鈱W(xué)影像不足,以及丘陵山區(qū)地形破碎問題,以江西省宜春市袁州區(qū)為研究區(qū),采用時(shí)序Sentinel系列影像數(shù)據(jù)和SRTM DEM數(shù)據(jù)為數(shù)據(jù)源,構(gòu)建和優(yōu)選了光譜特征、植被-水體指數(shù)、紅邊指數(shù)、雷達(dá)特征、地形特征和紋理特征共125個(gè)特征變量,其中,紋理特征采用累計(jì)差法(Δf)對(duì)比15種不同尺度窗口,計(jì)算Sentinel-1和Sentinel-2影像最佳紋理特征?;赗eliefF特征優(yōu)選算法和隨機(jī)森林分類算法,設(shè)計(jì)了8種特征組合方案開展實(shí)驗(yàn),探討不同特征類型對(duì)油茶提取精度的影響。結(jié)果表明:利用累計(jì)差法計(jì)算出的Sentinel-1和Sentinel-2的最佳紋理特征窗口尺寸均為35×35,最佳紋理特征組合為均值(Mean)、方差(Variance)和對(duì)比度(Contrast);在光譜特征、植被-水體指數(shù)的基礎(chǔ)上加入不同特征對(duì)油茶進(jìn)行分類,不同類型特征對(duì)油茶提取的有利程度由大到小依次為S2紋理特征、S1紋理特征、地形特征、雷達(dá)特征、紅邊指數(shù),相比于單一光譜和指數(shù)特征,紋理特征的加入可大幅度提高分類精度。多特征協(xié)同分類結(jié)果優(yōu)于單特征分類結(jié)果,基于特征優(yōu)選的油茶提取精度最高;基于ReliefF算法特征優(yōu)選后的方案精度最高,總體精度為88.29%,Kappa系數(shù)為0.81。本研究利用時(shí)序Sentinel系列遙感影像和DEM地形數(shù)據(jù),構(gòu)建了針對(duì)多云雨南方丘陵山區(qū)的大范圍油茶遙感提取方法,可為中國(guó)南方丘陵區(qū)域油茶資源調(diào)查與監(jiān)測(cè)提供參考。

    Abstract:

    As one of the economic forest species in Jiangxi Province, Camellia oleifera is also a characteristic advantageous industry in Jiangxi Province, and it is of great significance to accurately obtain its spatial distribution in terms of yield estimation, production management and policy formulation. In response to the lack of optical images due to the cloudy and rainy climate in the south, as well as the problem of fragmented terrain in hilly and mountainous areas, Yuanzhou District, Yichun City, Jiangxi Province, was taken as the study area. Using time-series Sentinel satellite imagery and SRTM DEM data as data sources, a total of 125 feature variables were constructed and selected, including spectral features, vegetation-water indices, red edge indices, radar features, terrain features and texture features. Among them, the texture features were calculated by comparing 15 different scale windows by using the cumulative difference method to calculate the best texture features for Sentinel-1 and Sentinel-2 images. Based on ReliefF feature preference algorithm and random forest classification algorithm, eight feature combination schemes were designed to carry out experiments to explore the impact of different feature types on the extraction accuracy of Camellia oleifera. The results showed that the optimal texture feature window for both Sentinel-1 and Sentinel-2 calculated experimentally by using the cumulative difference method was 35×35, and the optimal texture feature combinations were mean, variance and contrast. Building upon spectral features and vegetation-water indices, the incorporation of different features for Camellia oleifera classification demonstrated varying degrees of effectiveness. The favorability ranking of different feature types for Camellia oleifera extraction from large to small was as follows: S2 texture features, S1 texture features, terrain features, radar features and red edge index. Compared with single-spectrum and index features, the inclusion of texture features significantly enhanced classification accuracy. The synergistic classification results of multiple features surpass those of single-feature classification, with the highest precision achieved through Camellia oleifera extraction based on feature selection. The ReliefF algorithm feature optimized scheme had the highest accuracy with overall accuracy of 88.29% and Kappa coefficient of 0.81. This study utilized time-series Sentinel satellite imagery and DEM terrain data to develop a large-scale remote sensing extraction method for Camellia oleifera in the cloudy and rainy southern hilly mountainous region. This method can serve as a reference for the investigation and monitoring of Camellia oleifera resources in the hilly areas of southern China.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李恒凱,王潔,周艷兵,龍北平.融合時(shí)序Sentinel數(shù)據(jù)多特征優(yōu)選的南方丘陵區(qū)油茶種植區(qū)提取[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(7):241-251. LI Hengkai, WANG Jie, ZHOU Yanbing, LONG Beiping. Extraction of Camellia oleifera Planting Areas in Southern Hilly Area by Combining Multi-features of Time-series Sentinel Data[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(7):241-251.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-11-14
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-07-10
  • 出版日期: