亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于無(wú)人機(jī)高光譜遙感與機(jī)器學(xué)習(xí)的小麥品系產(chǎn)量估測(cè)研究
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

河北省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系小麥創(chuàng)新團(tuán)隊(duì)項(xiàng)目(21326318D)和河北省農(nóng)林科學(xué)院基本科研業(yè)務(wù)費(fèi)項(xiàng)目(2023090101)


Yield Estimation of Wheat Lines Based on UAV Hyperspectral Remote Sensing and Machine Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為快速、準(zhǔn)確地估測(cè)小麥產(chǎn)量,有效提高育種工作效率,本文以小麥品系為研究對(duì)象,收集小麥灌漿期無(wú)人機(jī)高光譜數(shù)據(jù)和產(chǎn)量數(shù)據(jù)。首先基于遞歸特征消除法篩選出特征波長(zhǎng)作為模型輸入變量,然后利用嶺回歸(Ridge regression,RR)、偏最小二乘回歸(Partial least squares regression,PLS)、多元線(xiàn)性回歸(Multiple linear regression,MLR)3種線(xiàn)性算法和隨機(jī)森林(Random forest,RF)、梯度提升回歸(Gradient boosting regression,GBR)、極限梯度提升(eXtreme gradient boosting,XGB)、高斯過(guò)程回歸(Gaussian process regression,GPR)、支持向量回歸(Support vector regression,SVR)、K最鄰近算法(K-nearest neighbor,KNN)6種非線(xiàn)性算法構(gòu)建單一算法產(chǎn)量估測(cè)模型并進(jìn)行精度比較,最后基于Stacking算法構(gòu)建多模型集成組合,篩選最佳集成模型。結(jié)果表明,基于不同算法的產(chǎn)量估測(cè)模型精度差異顯著,非線(xiàn)性模型優(yōu)于線(xiàn)性模型,基于GBR的產(chǎn)量估測(cè)模型在單一模型中表現(xiàn)最優(yōu),訓(xùn)練集R2為0.72,RMSE為534.49kg/hm2,NRMSE為11.10%,測(cè)試集R2為0.60,RMSE為628.73kg/hm2,NRMSE為13.88%。基于Stacking算法構(gòu)建的集成模型性能與初級(jí)模型和次級(jí)模型的選擇密切相關(guān),以KNN、RR、SVR為初級(jí)模型組合,GBR為次級(jí)模型的集成模型有效提高了估測(cè)精度,相比單一模型GBR,訓(xùn)練集R2提高1.39%,測(cè)試集R2提高3.33%。本研究可為基于高光譜技術(shù)的小麥品系產(chǎn)量估測(cè)提供應(yīng)用參考。

    Abstract:

    Rapid and accurate estimation of wheat yield can improve the efficiency of breeding. Yield data of wheat lines and hyperspectral data during grain filling period were collected. Firstly, the feature wavelengths were selected as model input variables by using recursive feature elimination method. Then three linear algorithms (ridge regression, partial least squares regression, multiple linear regression) and six nonlinear algorithms (random forest, gradient boosting regression, eXtreme gradient boosting, Gaussian process regression, support vector regression, K-nearest neighbor) were employed to establish single algorithm yield estimation models for precision comparison. Finally, the Stacking algorithm was adopted to develop multi-model ensemble combinations, aiming to identify the optimal ensemble model. The results showed that the accuracy of yield estimation models, based on different algorithms, varied significantly, and that the nonlinear models were better than the linear models. The yield estimation model based on GBR performed best in the single models, with R2 of 0.72, RMSE of 534.49kg/hm2 and NRMSE of 11.10% in the training set, R2 of 0.60, RMSE of 628.73kg/hm2, and NRMSE of 13.88% in the testing set. The performance of the ensemble models based on Stacking algorithm was closely related to the selection of primary and secondary models. The model with KNN, RR, SVR as primary models and GBR as the secondary model effectively improved the yield estimation accuracy. Compared with the single model GBR, the training set R2 was increased by 1.39% and the testing set R2 was increased by 3.33%. The research result can provide an application reference for yield estimation of wheat lines based on hyperspectral technology.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

齊浩,呂亮杰,孫海芳,李偲,李甜甜,侯亮.基于無(wú)人機(jī)高光譜遙感與機(jī)器學(xué)習(xí)的小麥品系產(chǎn)量估測(cè)研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(7):260-269. QI Hao, Lü Liangjie, SUN Haifang, LI Si, LI Tiantian, HOU Liang. Yield Estimation of Wheat Lines Based on UAV Hyperspectral Remote Sensing and Machine Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(7):260-269.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-03-22
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2024-07-10
  • 出版日期: