亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于超寬帶雷達(dá)回波短時傅里葉變換的土壤含水率檢測
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

中央高?;究蒲袠I(yè)務(wù)費專項資金項目(2452023048)和陜西省重點研發(fā)計劃項目(2020GY-162)


Soil Volumetric Moisture Content Detection Based on Short-time Fourier Transform of Ultra-wide Band Radar Echo
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    土壤體積含水率監(jiān)測對提高農(nóng)業(yè)生產(chǎn)效率和制定合理土壤管理措施具有重要意義。超寬帶雷達(dá)由于其高距離分辨率、強穿透能力在農(nóng)業(yè)土壤動態(tài)信息實時監(jiān)測中得到廣泛應(yīng)用。但以往對超寬帶雷達(dá)信號的處理主要關(guān)注時域特征,忽略了同樣具有豐富信息的頻域特征,使得回波信號在土壤體積含水率反演過程中無法得到充分利用,限制了土壤體積含水率的反演精度。本文基于超寬帶雷達(dá)獲取的土壤回波信號,對其進(jìn)行預(yù)處理并提取與土壤體積含水率有關(guān)的回波信號,對該信號采用短時傅里葉變換(Short-time Fourier transform, STFT),分析與土壤體積含水率有關(guān)的回波信號隨時序變化的時頻譜特征,進(jìn)而結(jié)合卷積神經(jīng)網(wǎng)絡(luò)(Convolutional neural network, CNN)建立土壤體積含水率分級以及回歸預(yù)測模型。實驗結(jié)果表明,基于添加高斯白噪聲后的數(shù)據(jù),對于土壤體積含水率的分級,將時頻特征和CNN模型相結(jié)合時,分級總體精度和Kappa系數(shù)分別為98.69%和0.9849,相較于10個時域特征與植被指數(shù)NDVI(Normalized difference vegetation index)建立的支持向量機模型(Support vector machine, SVM),分級總體精度提升21.78個百分點,Kappa系數(shù)提高0.2515。對于土壤體積含水率的回歸預(yù)測,將時頻特征和CNNR(Convolutional neural network regression)模型相結(jié)合時,預(yù)測結(jié)果與真實值之間的決定系數(shù)(R2)為0.9872,均方根誤差(RMSE)為0.0048cm3/cm3,相對分析誤差(RPD)為6.2738,相較于10個時域特征結(jié)合植被指數(shù)NDVI建立的CNNR模型,R2提升0.2316,RMSE降低1.3377cm3/cm3,RPD提高4.2714。綜上,在土壤體積含水率分級和回歸預(yù)測方面,本文所提方法較傳統(tǒng)信號檢測處理方法具有明顯優(yōu)勢。

    Abstract:

    Monitoring soil volumetric moisture content is crucial for enhancing agricultural production efficiency and devising reasonable soil management strategies. Ultra-wide band radar, due to its high resolution and strong penetration capabilities, is widely used in real-time monitoring of dynamic agricultural soil information. However, previous processing of ultra-wide band radar signals mainly focused on time-domain features, neglecting the equally informative frequency-domain characteristics. This oversight limited the utilization of echo signals in the inversion process of soil volumetric moisture content, thereby constraining the inversion accuracy. The soil echo signals obtained from ultra-wide band radar and extracts features related to soil volumetric moisture content were preprocessed. The signals were analyzed by using shorttime Fourier transform (STFT) to investigate the time-frequency spectral characteristics related to soil volumetric moisture content variations over time. Furthermore, a soil volumetric moisture content classification and regression prediction algorithm model was established by combining these features with a convolutional neural network (CNN). Experimental results showed that based on data augmented with Gaussian white noise, the overall accuracy and Kappa coefficient for soil volumetric moisture content classification using time-frequency features combined with the CNN model were respectively 98.69% and 0.9849. Compared with support vector machine (SVM) model built with ten time-domain features and the normalized difference vegetation index (NDVI), there was an increase in overall accuracy by 21.78 percentage points and an improvement in the Kappa coefficient by 0.2515. For soil volumetric moisture content regression prediction, combining time-frequency features with a convolutional neural network regression (CNNR) model, the coefficient of determination (R2) was 0.9872, the root mean square error (RMSE) was 0.0048cm3/cm3, and the relative percent difference (RPD) was 6.2738. Compared with the CNNR model established with ten time-domain features and NDVI, there was an increase in R2 by 0.2316, a reduction in RMSE by 1.3377cm3/cm3, and an improvement in RPD by 4.2714. Overall, the method proposed showed a clear advantage over traditional signal detection and processing methods in terms of classifying and predicting soil volumetric moisture content.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

尉鵬亮,周昱宏,王若蓁,郭交.基于超寬帶雷達(dá)回波短時傅里葉變換的土壤含水率檢測[J].農(nóng)業(yè)機械學(xué)報,2024,55(8):352-360. WEI Pengliang, ZHOU Yuhong, WANG Ruozhen, GUO Jiao. Soil Volumetric Moisture Content Detection Based on Short-time Fourier Transform of Ultra-wide Band Radar Echo[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(8):352-360.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-04-09
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-08-10
  • 出版日期: